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Abstract. A Monte Carlo sampling technique based on 2 x 2 rotations of the Heisenberg spin- 
I Hamiltonian containing bath anisavopic and next-nearest-neighbour (NNN) terms has been 
attempted. Closed rings of six. eight 10 and 12 spin-1 sites have been studied and the wnd 
and h e  first excited states have been obtained. The validity of ule procedure has also been 
tested using the spin correlation function for the ground slate. 

1. Introduction 

In recent years there have been extensive configuration interaction (cl)  studies of medium- 
sized systems using model Hamiltonians. These studies generally involve diagonalization 
of large sparse mahices which can be chosen to be symmetric. Typical examples are the 
Hubbard r-J model with first neighbour transfer terms [ld] for electron systems and the 
anisotropic Heisenberg Hamiltonian with first- and second-neighbour transfer terms 17-10] 
for spin-1 systems. If we ignore both spin and point-group symmetry, the dimensionality of 
the configuration state function (cSF) increases rapidly with increasing number of particles. 
Though the Hamiltonian matrices are relatively easy to generate if we assume orthonormal 
site orbitals or spins, the diagonalization leads to difficulties even for a few lowest-lying 
states. 

A way out of the above problem would be to use the Monte Carlo diagonalisation 
(MCD) procedures of sampling the CSF space [ 13-16]. In recent notes De Raedt and von der 
Linden [IS, 161 suggested a sampling technique based on succesive 2 x 2 plane rotations to 
generate a good ground state. This method was found to be quite good and avoided some 
of the problems inherent in MCD techniques. The procedure is based on essentially starting 
with a reference state having the lowest-valued diagonal element (called the 1-1 element) 
and choosing as its partner a state which yields maximal reduction in the 1-1 element. The 
plane rotation which yields this reduction is noted and the Hamiltonian is modified using it. 
The next CSF in the link to the ground state is now the one which yields maximal reduction 
in the modified 1-1 element. This procedure continues until all off-diagonal elements in 
the reference row are below a certain preassigned level. The resulting 1-1 element is then 
a good approximation to the ground state. The procedure is straightforward to implement 
and can be readily programmed. One of the most time-consuming steps in this procedure 
is the need to generate the Hamiltonian matrix to locate the CSF which leads to maximum 
reduction in the 1-1 element. 

In view of the above, we attempted to modify the approach to some extent to have 
fewer determinations of the Hamiltonian matrix elements. Instead of picking up the CSF 
which leads to a maximal reduction in the 1-1 element, we select any CSF which yields 
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reduction of the 1-1 element below a preassigned value. A limited number of sweeps is 
done over cSF space to select a set of states contributing significantly to the ground state. 
The Davidson or Rettrup 117,181 algorithm is then used over this selected subspace to find 
the few lowest states. 

This procedure has been used in the present work to study the antiferromagnetic 
Heisenberg Hamiltonian with anistropic interaction and next-nearest-neighbour (NNN) 
interaction for the spin-I system. The first two eigenenergies and the spin correlation 
functions have been calculated. It has been found that a severely truncated space chosen 
as in the present approach yields a reasonably good result. The procedure is outlined in 
section 2 and the results of studies on a number of systems are presented in section 3. 

M A  Huda Ahsan et al 

2. The procedure 

Consider an orthonormal set of CSFs. {$~j 1 i = 1, . . . , n )  spanning the Hilbert space of a 
many-body Hamiltonian. The matrix representation of the Hamiltonian over such a basis is 
symmetric and may be assumed to be real. If n is sufficiently large, the diagonalization of 
the matrix could be a formidable problem even if only a few of the lowest states are to be 
obtained. Monte Carlo methods can be employed if the matrix is relatively sparse. One such 
method was recently proposed by De Raedt and von der Linden [15,16] and successfully 
implemented in the diagonalization of the first neighbour Hubbard Hamiltonian for spin-3 
systems. The results they reported were quite good. The only disadvantage in their method 
was the need to repeatedly generate the Hamiltonian matrix elements during sampling of 
the CSF space to chose the optimum path leading to a good ground state. So we consider a 
modification of the approach in the present paper which considerably minimizes the number 
of matrix element evaluations. Before outlining our modification, we summarize briefly the 
technique of De Raedt and von der Linden [15,16]. Let 

HiJ = ( i lH l j }  (1) 

be the elements of the Hamiltonian matrix over the CSFS. Let @ i , ,  be two CSFS for which 
Hi,;,, Hizit have the lowest and next lowest values (Hi, i ,  < Hc1i2) and Hili2 # 0 amongst 
the set ( H ; j l j  = 1, . . . , n } .  Imposing the plane rotation matrix 

(2) R!'! -R?) - sine1 RI;; = cosel R , ,  ( I )  - - 8. ,1,, . 
e l l 2  1111 

Ri;: = ~ 0 ~ 6 ,  

on the Hamiltonian as 

HI = R ( I ) H R ( ~ ) - '  

the HA;! element is equated to zero yielding a determination of 81 through 

(3 )  

This enables HL:: to be determined. A search is carried out over all possible i2 such that 

The procedure is repeated with the addition of I);, (is # i l ,  i2) and so on, till the full 
configuration space is exhausted. It is this search which is time consuming . 

the lowest value of this element ( H i : ; )  results. Using this 81 , H i t i ,  (1) etc are determined. 
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The basic elements occurring at the level of addition of in De Raedt and von der 
Linden [15,16] procedure are 

with 

c k  = cos& SA = sin& H o  V = Hij. (10) 

Starting with k = 1 the quantities in (5-10) are computed in the procedure due to De b e d t  
and von der Linden r15.161 till all n CSFS are exhausted. The criterion for picking up a 
CSF, @ j k ,  is decided depending on a minimum prescribed limit for 

In order to determine which @ k + ~  at the kth level leads to a maximum lowering of A of 
( 1  1) we need to compute all the three quantities on the right-hand side of (5) plus H$i, for 
aI1 the residual (n - k) CSFs. 

In order to avoid this multiple evaluation of Hjj we proceed as follows. Having chosen 
the starting pair $i,, qh we proceed to cover all the remaining (n - 2) CSFs sequentially. 
At every stage, k, we determine 0, and hence I A I. We now vary 6, over a small range 
of values and note the value for which I A 1 is maximum. If this maximum is less than 
a preassigned value we skip this and go to the next one. After all n CsFs have been 
sampled, we repeat the procedure for a few more (at most 10) sweeps and collect all the 
CSFs contributing significantly to the ground state. In all sparse mabices, this procedure 
has been found to pick up about 30% of the full cSF space. Since the path chosen is not, 
now, optimal, the ground state energy is not very good, so we use the Rettrup or Davidson 
117.181 algorithm for sparse matrices over the subspace to obtain the gound state and a 
few low-lying excited states. 

3. Applications and results 

We have implemented the above scheme for two spin-1 systems, both being antiferromag- 
netic Heisenberg rings, one with the anisotropic term and the other with the next-nearest- 
neighbour (NNN) term. The spin-1 systems are of current interest since Haldane [7] conjec- 
tured the difference between the behaviour of spin-; and spin-I systems. The Heisenberg 
Hamiltonian with the anisotropic term 

HI = (Si.Si*l + (h  - l)sf.s:+,) (12) 
i 

has been studied quite extensively. It is well established that an extended phase, which 
includes the isotropic point, with a gap in the spectrum and no magnetization exists for 
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Table 1. Ground- and first-excited-state eigenvalues for spin-l rings of 6, 8, 10 and 12 sites in 
the S = 0 state ai the Heisenberg point: A = 1.0 and U = 0.0, 

Dimensionality Ground-state eigenvalue Firstoxcited-slate eigenvalue 

N Full TNnWed Ewct Truncated 8 MOI Exact TNnctated % ermr 

6 141 141 - 8,617 - 8.617 0.00 - 7.897 - 7.897 0.00 
8 1107 884 -11.337 -11.330 0.06 -10,743 -10.742 0.01 

10 8953 6085 -14.094 -14.090 0.03 -13,569 -13.568 0.01 
12 73789 20586 -16.870 -16.800 0.41 -16.385 -16.369 0.10 

Table 2. Spin correlation function pzi = (S; S j )  for spin-1 rings of 6, 8, 10 and 12 sites in 
S = 0 at the Heisenberg point: k = 1.0 and w = 0.0. 

Dimensionality rr-correlation function pz2 

N Full Truncated Exxl  Truncated B e r m r  

6 141 141 -0.286 -0.286 0.00 
8 I107 884 0.216 0.219 -1.39 

10 8953 6085 -0.182 -0.183 -0.55 
12 73789 20586 0.145 0.173 -19.31 

~ ~~ ~~ ~ ~ ~~ ~~~~ 

Table 3. Variation of the gmund- and the iirst.exeited-state eigenvalues with thc virriation of i 
for the ylisohopic HamillonIan with nearest neighbour (NN) interactions: N = 12, S = 0, full- 
space dimensionality = 73789, mncated-space dimensionality = 20586. A is the anisotroDic 
panmeter. 

Ground-state eigenvalue Firsi-excited-state eigenvalue 

A Exact Truncated % en01 Exact Truncated %error 

0.2 -13.935 -13554 2.73 -12.995 -12.033 7.40 
0.4 -14.477 -14.174 2.09 -13.437 -12.629 6.01 
0.6 -15.116 -14.893 1.48 -13.953 -13.703 1.79 
0.8 -15.889 -15.747 0.89 -14972 -14.939 0.22 
1.0 -16.870 -16.800 0.41 -16.385 -16.369 0.10 
1.2 -18,190 -18.168 0.12 -18.020 -18.013 0.04 
1.4 -19.897 -19.892 0.03 -19.852 -19.849 0.02 
1.6 -21.845 -21.843 0.01 -21.833 -21.832 0.00 
1.8 -23.918 -23.918 0.00 -23.915 -23.915 0.00 
2.0 -26.068 -26.068 O N  -26.067 -26.067 0.00 

h < 1.18 while for A. > 1.18 there exists a gapless phase with staggered magnetization. For 
the Heisenberg Hamiltonian with NNN interaction 

Hz = (Sj.Si+, + aS,.S,+*) (13) 
i 

it has been found that there is a gap in the spectrum. With these Hamiltonians we calculate 
the eigenenergies and correlation functions and demonstrate that the energies of the few 
lowest states and the wavefunction of the ground state are reasonably good. 

The CSFs spanning the Hilbert space V3BN a e  the tensor mononials, 

V 3 ~ ~ = [ ( ~ ~ , ~ ~ . . . ~ ~ ) l j k € ( 1 . 2 . 3 ) ]  (14) 

where @i are spin states of spin-1 particles. The matrices obtained are quite sparse. 
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Table 4. Varialion of the ground- and the first-excitedstate eigenvalues with the variation of U 
for the isompic Hamiltonian with nearest- and next-”em-neighbow (NN and NNN) interactions: 
N = 12. S = 0, full.space dimensionality = 73789, truncated-space dimensionality = 20586. 01 

is the next-nearest-neighbour (NNN) pmmeter. 

Ground-swte eigenvalue Firstexcited-stale eigenvalue 

CI Exact Truncated %error Exact Truncated % e r o r  

0.1 -15.971 -15.943 0.18 -15.441 -15.432 0.06 
0.2 -15.159 -15.154 0.03 -14.557 -14.550 0.05 
0.3 -14.472 -14.465 0.05 -13.759 -13.748 0.08 
0.4 -13.953 -13.929 0.17 -13,132 -13.075 0.43 
05 -13.692 -13.634 0.42 -12.910 -12.807 0.80 
0.6 -13.916 -13.687 1.65 -13.385 -13.089 2.21 
0.7 -14.555 -14.058 3.41 -14.074 -13.559 3.66 
0.8 -15.368 -14.608 4.95 -14.875 -14.141 4.93 
0.9 -16.473 -15.251 7.42 -16.153 -14.793 8.42 
1.0 -17.986 -15.955 11.29 -17.567 -15.621 11.08 

Table 5. Variation of the spin correlation function pz2  with 1 for (he anisotropic Hamiltonian 
with newt-neighbour (NN) interactions: N = 12, S = 0, full-space dimensionality = 73789, 
truncated-space dimensionality = 20586. A is the amsotropic parameter. 

A 

0.2 
0.4 
0.6 
0.8 
I .o 
1.2 
1.4 
1.6 
I .8 
2.0 

- 

zr-correlation function pii 

Exact Truncaled %error 

-0.006 0.000 100.M1 
-0.004 0.002 150.00 
0.003 0.012 -300.00 
0.033 0.049 - 48.48 
0.145 0.173 - 19.31 
0.415 0.434 - 4.58 
0.655 0.659 - 0.61 
0.772 0.773 - 0.13 
0.833 0.834 - 0.12 
0.871 0.871 0.00 

Table 6. Variation of the spin-correlation function pzr with U for the isompic Hamiltonian 
wifh nearest- and next-nearest-neighbour (NN and NNN) interactions: N= 12, S = 0 , full- 
space dimensionality = 73789, INncateX-Space dimensionality = 20586. a is lhe next-neatest- 
neighhur parameter. 

rr-mrrelalion function pri 

e Exact Truncated %error 
0.1 0.105 0.113 - 7.62 
0.2 0.054 0.054 0.00 
0.3 0.003 0.002 33.33 
0.4 -0,022 -0.022 0.00 
0.5 0.024 0.019 20.83 
0.6 0.148 0.116 21.62 
0.7 0.192 0.175 8.85 
0.8 0.179 0.190 - 6.15 
0.9 -0.073 0.186 354.79 
1.0 -0.197 0.173 187.82 
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The results are summarized in the following tables. For the anisotropic Hamiltonian, 
these calculations were done for N = 6,8,10, 12 and for A E [O, 21. Calculations for the 
NNN Hamiltonian were done for 01 E [O, 11. For all N, we have done the sampling at A = 1 
and 01 = 0, that is at the Heisenberg point, and used the same truncated subspace to find the 
ground state and the excited state for the entire parameter domain. Table 1 lists the energies 
and percentage deviations for the Heisenberg Hamiltonian for different N at A = 1 and 
01 = 0. We observe that the ratio of~@e dimension of truncated space to the full dimension 
decreases with increasing N. For N = 12 only 28% of the total space is selected. In spite 
of such severe truncation the percentage errors in the energies do not increase very much. 
Table 2 shows the ground-state correlation functions at the Heisenberg point A = 1 and 
01 = 0. The zz-correlation function pn is defined as 

These functions are very much sensitive to the quality of the wavefunction. Moreover, 
we notice that for N = 12 the truncated space correlation function value is about 80% of 
the full-space correlation function value. Table 3 and 4 show energies of the anisotropic 
and NNN Hamiltonians at different values of the respective parameters. For the anisotropic 
Hamiltonian the error is higher for small A. since the sampling of CSFs was done at b = 1. 
Similarly for the NNN Hamiltonian the error increases with increasing 01 because the sampling 
was done at 01 = 0. In tables 5 and 6 we give the spin correlation functions for the anisotropic 
Hamiltonian (12) and the NNN Hamiltonian (13) respectively. In the case of the anisotropic 
Hamiltonian the the correlation functions improves down the table, a behaviour similar to 
that shown by the energy. In the case of the NNN Hamiltonian the correlation function more 
or less worsens as 01 increases, which is once again similar to the behaviour shown by the 
energy. 
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