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Abstract. A Monte Carlo sampling technique based on 2 x 2 rotations of the Heisenberg spin-
1 Hamiltonian containing both anisotropic and next-nearest-neighbour (NNN) terms has been
attempted. Closed rings of 5ix, cight, 10 and 12 spin-1 sites have been studied and the ground
and the first excited states have been obtained. The validity of the procedure has also been
tested using the spin correlation function for the ground state.

1. Introduction

In recent years there have been extensive configuration interaction (C1) studies of medium-
sized systems using model Hamiltonians. These studies geperally involve diagonalization
of large sparse matrices which can be chosen to be symmetric. Typical examples are the
Hubbard -/ model with first neighbour transfer terms [1-6] for electron systems and the
anisotropic Heisenberg Hamiltonian with first- and second-neighbour transfer terms [7-10]
for spin-1 systems. If we ignore both spin and point-group symmetry, the dimensionality of
the configuration state function (CSF) increases rapidly with increasing number of particles.
Though the Hamiltonian matrices are relatively easy to generate if we assume orthonormal
site orbitals or spins, the diagonalization leads to difficulties even for a few lowest-lying
states.

A way out of the above problem would be to use the Monte Carlo diagonalisation
(MCD) procedures of sampling the CSF space [13-16]. In recent notes De Raedt and von der
Linden [15, 16] suggested 2 sampling technique based on succesive 2 x 2 plane rotations to
generate a good ground state. This method was found to be quite good and avoided some
of the problems inherent in MCD techniques. The procedure is based on essentially starting
with a reference state having the lowest-valued diagonal element {called the 1-1 element)
and choosing as its partner a state which yields maximal reduction in the 1-1 element. The
plane rotation which yields this reduction is noted and the Hamiitonian is modified using it.
The next CSF in the link to the ground state is now the one which yields maximal reduction
in the modified 1-1 element. This procedure continues until all off-diagonal elements in
the reference row are below a certain preassigned level. The resulting 1-1 element is then
a good approximation to the ground state. The procedure is straightforward to implement
and can be readily programmed. One of the most time-consuming steps in this procedure
is the need to generate the Hamiltonian matrix to locate the CSF which leads to maximum
reduction in the 1-1 element.

In view of the above, we attempted to modify the approach to some extent to have
fewer determinations of the Hamilionian matrix elements. Instead of picking up the CSF
which leads to a maximal reduction in the 1-1 element, we select any CSF which yields
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reduction of the 1-1 clement below a preassigned value. A limited number of sweeps is
done over CSF space to select a set of states contributing significantly to the ground state.
The Davidson or Rettrup {17, 18] algorithm is then used over this selected subspace to find
the few lowest states.

This procedure has been used in the present work to study the antiferromagnetic
Heisenberg Hamiltonian with anistropic interaction and next-nearest-neighbour (NNN)
interaction for the spin-1 system. The first two eigenenergies and the spin cormrelation
functions have been caiculated. It has been found that a severely truncated space chosen
as in the present approach yields a reasonably good result. The procedure is outlined in
section 2 and the resulis of studies on a number of systems are presented in section 3.

2. The procedure

Consider an orthonormal set of CSFs, {y; 1i = 1, ..., n} spanning the Hilbert space of a
many-body Hamiltonian. The matrix representation of the Hamiltonian over such a basis is
symmetric and may be assumed to be real. If » is sufficiently large, the diagonalization of
the matrix could be a formidable problem even if only a few of the lowest states are to be
obtained. Monte Carlo methods can be employed if the matrix is relatively sparse. One such
method was recently proposed by De Raedt and von der Linden [15, 16] and successfuily
implemented in the diagonalization of the first neighbour Hubbard Hamiltonian for spin-%
systems. The results they reported were quite good. The only disadvantage in their method
was the need to repeatedly generate the Hamiltonian matrix elements during sampling of
the CSF space to chose the optimum path leading to a good ground state. So we consider a
modification of the approach in the present paper which considerably minimizes the number
of matrix element evaluations. Before outlining our modification, we summarize briefly the
technique of De Raedt and von der Linden [15, 161, Let

Hy = {{|H]j} (n

be the elements of the Hamiltonian matrix over the CSFs. Let i, ¥, be two CsFs for which
Hi,i,y Hi,, have the lowest and next lowest values (H;,;, € Hy;,) and H;;, # 0 amongst

the set {H;;|j = I, ..., n}. Imposing the plane rotation matrix
1 ! . ) 1
R =cosé R} = —R{) = —sing, RD) = cosé; R =4, )

on the Hamiltonian as
H! = RIDHRM™ 3

the H,-(f,z element is equated to zero yielding a determination of 6, through
2}1;'”'2

tan26y = Ao H

)

33} 2ip

This enables Hi(,la? to be determined. A search is carried out over all possible i3 such that
the lowest value of this element (Hi(ll.)) results. Using this &; , HSJ etc are determined.

1

The procedure is repeated with the addition of ¥y, (i3 $# i1,i2) and so on, till the full
configuration space is exhausted. It is this search which is time consuming .
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The basic elements occurring at the level of addition of ¢;, in De Raedt and von der
Linder [15, 16] procedure are

&=1)

i1k
@n 26, = —p il 5)
i) ix1igy

(3 k=1 k=1 k—1

Hf(:f!) = H!'(H'l )Cg + 2fliifk+:)ck's"‘ + Hii.,,liez.lsff (6)
k) (x—1} (k~1} (=1} g2 2

‘Hl'll'ul = (ka+lf£+] - Hitfl )Cksk + I-Iilikq.l (Ck - Sk) (7)
(3] (k—1 k=1)

H!'Efmz = Hilik-pz) Cr + ka+1l'k+z Sk ®)
(3] — g
ivpafes2 Hir:+zir‘+z 9

with
Ci = cosb, S; = sin H) = H;. (10)

Starting with & = 1 the quantities in (5-10) are computed in the procedure due to De Raedt
and von der Linden [15,16] till all » CSFs are exhausted. The criterion for picking up a
CSF, ¥,, is decided depending on a minimum presctibed limit for

A= HY - gED. (1
In order to determine which .y, at the kth level leads to a maximum lowering of A of
(11) we need to compute all the three quantities on the right-hand side of (5) plus Hf:ff, for
all the residual (n — k) CSFs.

In order to avoid this multiple evaluation of H;; we proceed as follows. Having chosen
the starting pair ¥,, ¥;, we proceed to cover all the remaining (n — 2) CSFs sequentially.
At every stage, k, we determine &, and hence | A |. We now vary 6, over a small range
of values and note the value for which | A | is maximum. If this maximum is less than
a preassigned value we skip this and go to the next one. After all # CSFs have been
sampled, we repeat the procedure for a few more (at most 10) sweeps and collect all the
CSPs contributing significantly to the ground state. In all sparse matrices, this procedure
has been found to pick up about 30% of the full CSF space. Since the path chosen is not,
now, optimal, the ground state energy is not very good, so we use the Rettrup or Davidson
[17,18] algorithm for sparse matrices over the subspace to obtain the ground state and a
few low-lying excited states.

3. Applications and results

We have implemented the above scheme for two spin-1 systems, both being antiferromag-
netic Heisenberg rings, one with the anisotropic term and the other with the next-nearest-
neighbour (NNN) term. The spin-1 systems are of current interest since Haldane [7] conjec-
tured the difference between the behaviour of spin-'i and spin-1 systems. The Heisenberg
Hamiltonian with the anisotropic term

o= Z (S:"Si-i-l + - I)S?'Sfﬂ) (12)

has been studied quite extensively. It is well established that an extended phase, which
includes the isotropic point, with a gap in the spectrum and no magnetization exists for
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Table 1. Ground- and first-excited-state eigenvalues for spin-1 rings of 6, 8, 10 and 12 sites in
the § = ¢ state at the Heisenberg point: A = 1.0and & = 0.0,

Dimensicnality Ground-state eigenvalue First-excited-state eigenvalue

N Full Truncated  Exact Truncated % error  Exact Trunctated % ertor
6 141 14§ - 8617 - 8617 0.00 — 7897 -~ 7.897 0.00
3 1107 884 —-11.337 =11.330 0.06 -10743  -10742 0.01
1o 8953 6085 -14.004 —14.090 0.03 —13.569 —13.568 0.01

12 73789 20586 -16870 —16.800 0.41 —16.385 -16.369 0.10

Table 2. Spin correlation function g, = (578} for spin-1 rings of 6, 8, 10 and 12 sites in
§ = 0 at the Heisenberg point: A= 1.0and ¢ = 0.0,

Dimensionality zz-correlation function p,,
N Full Truncated  Exact Truncated % error
6 141 141 —0.286 -0.286 0.00
8 1107 384 0.216 0.219 -1.39
10 8953 6085 —0.182 —0.183 —0.55
2 73789 20586 0.145 0.173 —19.3¢

Table 3. Variation of the ground- and the first-excited-state eigenvalues with the variation of A
for the anisotropic Hamiltonian with nearest neighbour (NN) interactions: N = 12, § = {, full-
space dimensionality = 73 789, truncated-space dimensionality = 20586. A is the anisotropic

parameter,
Ground-state eigenvalye First-excited-state eigenvalue

A Exact Truncated % etTor Exact Truncated % error
02 -13935 -—13.554 2,73 —-12995 -12.033 7.40
0.4 ~14477 -14.174 209 —13437 -12629 6.01
06 —15.1i6 —14.893 1.48 —13953 —13.703 1.79
08 —1588%9 —15.747 0.89 —14972 —14.939 0.22
1.0 —i6870 —16.800 0.41 -16385 —16.369 0.10
12 -18.190 —18.168 0.12 —18.020 -18.013 0.04
1.4 19897 —15892 D.03 —19.852 -—-19.349 0.02
16 =21.845 =21.843 0.01 —21.833 -21.832 0.00
1.8 -23918 -239i18 0.00 -23915 -23915 0.00
20 -26,068 —26.068 0.00 -26.067 -—26.067 0.00

A £ 1.18 while for A > 1.18 there exists a gapless phase with staggered magnetization. For
the Heisenberg Hamiltonian with NNN interaction

Hy =) (8i-8ip1 +aS:i-8ip2) (13)

it has been found that there is a gap in the spectrum. With these Hamiltonians we calculate
the eigenenergies and correlation functions and demonstrate that the energies of the few
lowest states and the wavefunction of the ground state are reasonably good.

The CSFs spanning the Hilbert space Va@" are the tensor mononials,

vi®" = {6} .- o)) ik & (1,2,3)} (14)

where ¢; are spin states of spin-1 particles. The matrices obtained are quite sparse,
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Table 4, Variation of the ground- and the first-excited-state eigenvalues with the varjation of &
for the isotropic Hamiltonian with nearest- and next-nearest-neighbour (NN and NNN) interactions;
N =12, § =0, full-space dimensionality = 73 789, truncated-space dimensionality = 20586. «
is the next-nearest-neighbour (NNN) parameter.

Ground-state eigenvafue First-excited-state eigenvalue
o Exact Truncated % error Exact Truncated % ermor
01 —15971 -15943 018  —15441 -—15432 0.06
02 -15159 -I5.154 003 —14557 -—14.550 0.05
03 14472 -14.465 005 -13759 -—13.748 0.08
04 -—13853 -13929 017 —-13132 13075 0.43
05 -13.692 -13.634 042  ~12910 -12.807 0.80
06 -13916 -13.687 1.65 ~13.385 —13.089 2.21
07 -—14555 —~14.058 34 ~14074 —13.359 3.66
03 -—15368 —14.608 495  -14875 -14.141 4.93
09 -—16473 -1525] 742 —16.153 —14.793 8.42
1.0 —1798 15955 1129 17567 -15621 1108

Table 5. Variation of the spin corrclation function g,, with ) for the anisotropic Hamiltonian
with nearest-neighbour (NN) interactions; N = 12, § = 0, full-space dimensionality = 73789,
tryncated-space dimensionality = 20 586. A is the anisotropic parameter.

zz-correlation function g,

by Exact Truncated T 2IOT
02 ~-0.006 0.000 100.00
04 —0.004 0.002 150.00
0.6 0.003 0.012 -300.00
0.8 0.033 0.049 — 4848
i.0 0.145 0.173 - 1931
1.2 0.415 0434 - 458
1.4 0.655 0.659 — 0.6l
16 0.772 0.373 - 013
1.8 0.833 0.834 - 012
20 0.871 0.871 0.00

Table 6, Variation of the spin-correlation function p;; with & for the isotropic Hamiltonian
with nearest- and next-nearest-neighbour (NN and NNN)} interactions; N= 12, § = 0, full-
space dimensionality = 73789, truncated-space dimensionality = 20586. & s the next-nearest-
neighbour parameter.

zz-comrelation function p;

] Exact Truncated % error
0.1 0.105 ¢.113 - 762
0.2 0.054 0.054 0.00
03 0.003 0.002 33.33
04 =0022 -=0.022 0.00
0.5 0.024 0.019 20.83
0.6 0.148 0.116 21.62
0.7 0.192 0.175 8.85
08 0.179 0.120 - 615
0.8 0073 0.186 354719

1.0 -0.197 0.173 187.82
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The results are summarized in the following tables. For the anisotropic Hamiltonian,
these calculations were done for N = 6, 8, 10, 12 and for A € [0, 2]. Calculations for the
NNN Hamiltonian were done for ¢ € [0, 1]. For all N, we have done the sampling at A =1
and o = 0, that is at the Heisenberg point, and used the same truncated subspace to find the
ground state and the excited state for the entire parameter domain. Table 1 lists the energies
and percentage deviations for the Heisenberg Hamiltonian for different & at 4 = 1 and
« = 0. We observe that the ratio of the dimension of truncated space to the full dimension
decreases with increasing N. For N = 12 only 28% of the total space is selected. In spite
of such severe truncation the percentage errors in the energies do not increase very much.
Table 2 shows the ground-state correlation functions at the Heisenberg point A = 1 and
o« = 0. The zz-correlation function p,; is defined as

Pz = (SIS, (15)

These functions are very much sensitive to the quality of the wavefunction. Moreover,
we notice that for N = 12 the truncated space correlation function value is about 80% of
the full-space correlation function value. Table 3 and 4 show energies of the anisotropic
and NNN Hamiltonians at different values of the respective parameters. For the anisotropic
Hamiltonian the error is higher for small A, since the sampling of CSFs was done at A = 1.
Similarly for the NNN Hamiltonian the error increases with increasing « because the sampling
was done at @ = 0. In tables 5 and 6 we give the spin correlation functions for the anisotropic
Hamiltonian (12) and the NNN Hamiltonian (13) respectively. In the case of the anisotropic
Hamiltonian the the correlation functions improves down the table, a behaviour similar to
that shown by the energy. In the case of the NNN Hamiltonian the correlation function more
or less worsens as « increases, which is once again similar to the behaviour shown by the
energy.
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